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1. TRANSPORT IN PIPE FLOW

In this section, we take a first view of turbulent transport problem by examine the easiest

case, which is pipe flow. The pipe is considered as an inhomogeneous bounded system, where

we have the pressure drop ∆p along the pipe flow. The flow is driven by the pressure drop

per unit length ∆p/l. A schematic of the pipe flow problem is shown in FIG. 1. Here, we

take the direction of the flow as x-axis, and the plane of the wall as xz plane. The flow has

a no-slip boundary condition at the wall (ux(y = 0) = 0). There is no y and z component

of the velocity (uy = uz = 0) and all quantities depend on y only. To study the turbulence,

we are considering case for Reynolds number Re = 2Ua/ν � 1, where a is the radius of

the pipe and U is the mean velocity of the flow. The flow in the pipe is governed by the

Navies-Stokes equation:
∂v
∂t

+ v · ∇v = −∇p
ρ

+ ν∇2v. (1.1)

Although Re � 1, we need to keep the resistance term to satisfy the boundary condition.

Because of the no-slip boundary condition, the flow in the pipe experience a drag force

due to the friction to the wall. Here, we denote the frictional force on unit area of the surface

by σ. It is the momentum transmitted by turbulent mixing per unit time. The x-component

momentum is continuously transmitted from the layers of fluid remote from the surface yo

those nearer it, which confines the overall momentum. The existence of the momentum flux
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FIG. 1. A schematic of the steady-state velocity profile of pipe flow with a no-slip boundary

condition. The red curve denotes the x-component velocity distribution with y.

is due to the gradient of the velocity in y-direction. If there is no boundary condition and

we have a homogenized velocity profile, there would be no momentum flux.

At a sufficiently small distance from the surface, the viscosity of the fluid is actually a

key factor. We call this layer the viscous sublayer. The thickness of the viscous sublayer is

denoted as lvs. The scale of the turbulence at these distances is of the order of lvs.

The characteristic velocity of the turbulent u∗ is defined by σ = ρu2∗. The term u∗ is

called the typical turbulent velocity or the friction velocity. In a steady state, we notice the

two key players, namely the friction to the wall and the pressure drop which drives the flow,

must be balancing each other. From that we derive the friction velocity u∗

2πalρu2∗ = πa2∆p,

u∗ = (∆p/2ρ)
1
2 (a/l)

1
2 .

(1.2)

(1.3)

We can estimate the thickness of viscous sublayer by the Reynolds number Re ∼ u∗lvs/ν.

The viscosity would be important when Re becomes the order of unity. Therefore, we find

lvs ∼ ν/u∗. (1.4)

At the layer within the viscous sublayer (y < lvs), the flow is determined by ordinary

3



friction. The velocity distribution can be obtained directly by the formula of viscous friction

σ = ρu2∗ = ρν
∂u

∂y
,

u(y) =
u2∗y

ν
(y < lvs).

(1.5)

(1.6)

This means the velocity profile in the viscous sublayer is linear with y.

With a distance further than lvs to the wall, viscosity become less important. We call this

region (lvs < y < a) the inertial sublayer. Here it is important to point out the universality

of the inertial sublayer, which means the velocity profile in this layer is invariant of the

scales we choose. To determine the velocity gradient du/dy, the only parameters we have

left is ρ, U∗, and of course the distance to the wall y. The only combination with the right

dimensions is u∗/y. Hence we must have

du/dy = u∗/y. (1.7)

Integration of Eq. (1.7) gives

u = u∗ log y + c, (1.8)

where c is a constant of integration. This constant can be determined as there is no sharp

boundary between the viscous sublayer and the inertial sublayer. To match the velocity at

the viscous layer at y = lvs, we have c = u∗(1− log(ν/u∗)). So the velocity profile has

u = u∗ log(yu∗/ν) + u∗. (1.9)

This shows that the inertial sublayer has a logarithmic velocity profile.

At the distance near the center of the pipe, the function log y varies slowly and we have a

near-flat velocity profile in this region (we refer to this region as the core of the flow). With

the logarithm accuracy (log(au∗/ν)� 1), we can use the formula Eq. (1.9) to evaluate the

mean velocity U by replacing y by a

U = u∗ log(au∗/ν). (1.10)

We substitute Eq. (1.3) in to Eq. (1.10) which gives,

U =
√

(a∆p/2ρl) log[(a/ν)
√

(a∆p/2ρl)]. (1.11)
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FIG. 2. A logarithmic graph of λ as a function of Reynolds number R. The first branch (smaller

R) denotes the laminar flow and the second branch (larger R) denotes the turbulent flow.

It is customary to introduce a dimensionless parameter λ called the resistance coefficient

of the pipe,

λ =
2a∆p/l
1
2
ρU2

(1.12)

This parameters shows the ratio of the driving energy (input energy) versus the energy

stored in the flow. We can find out the dependence of λ on the dimensionless Reynolds

number Re = 2aU/ν in the turbulent using Eq. 1.11 With all the constants considered, the

relation gives

1/
√
λ = 0.88 log(Re

√
λ)− 0.85 (1.13)

For comparison, for the laminar flow

λ = 64/Re (1.14)

. Figure 2 shows a logarithmic graph of λ as a function of Re. We observed that the

resistance coefficient diminish with the increasing Reynolds number more rapidly than in

turbulent flow. At the transit point the resistance coefficient increases abruptly and transit

to the less steep turbulent curve.
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2. MIXING LENGTH THEORY

In the previous section, we studied how the momentum in the pipe flow is confined by

the momentum transmission to the wall. The mechanism here is that the momentum is

transported to the wall by turbulent mixing, which akin to kinetic theory in gas. It is also

important to point out that this procedure is a flux driven transport. We get the momentum

flux by calculating Reynolds stress.

The Reynolds stress σ is the mean value of the component Πx,y of the momentum flux

density tensor. Outside the viscous sublayer, the viscosity is omitted and Πx,y = ρvxvy. The

mean velocity is in x-direction so vx = u+ ṽx, vy = ṽy. Previously, we define σ = ρu2∗ by the

assumption that the fluctuation of the turbulent is isotropic (〈vyvx〉 ∼ u2∗). Therefore,

σ = ρu2∗ = ρ〈vxvy〉 = ρ〈ṽxṽy〉. (2.1)

To calculate the Reynolds stress, we need to find out the fluctuation of stream-vise velocity

ṽx.

Now, we assume that the fluctuation is caused by by the transport via distribution of the

‘parcels’ of fluid. The momentum of the parcels are considered to be conserved locally, which

means the parcel keeps the momentum from its original location. The fluctuation occurs

when the parcel is transported over a distance l. Then, we can express the fluctuation with

Taylor expansion

ṽx = u(y − l)− u(y) ' −l ∂u
∂y
. (2.2)

With ṽy ∼ u∗, we can express the Reynolds stress as

σ = −ρ〈u∗l〉
∂u

∂y
(2.3)

The term 〈u∗l〉 acts like a viscosity term, which can refer it as eddy viscosity or turbulent

viscosity. The term l is called mixing length. It is the length scale over which the mixing

of parcel momentum occur. It is important to distinguish it to the mean free path as the

discussion above does not involve collisions. The way we described above to study the flux

driven transport is called the Mixing length theory (MLT).

It is important to point out the scale invariance in this problem. We don’t have a

characteristic constant parameter which might give the fundamental scale of the turbulence.

The scale is determined by the distance y itself. Therefore, the mixing length is restricted
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only by the distance to the nearest boundary. Then, with l ∼ y, we substitute it into Eq.2.3

ρu∗y
∂u

∂y
= ρu2∗ = σ (2.4)

which gives the same differential equation as 1.7 and we get the logarithmic profile in inertial

layer. The logarithmic profile is also called the ‘Law of the wall’ in turbulent.

With the Taylor expansion in Eq. 2.2, a potential limitation in MLT is that we need the

transport to be local. In other words, the mixing length l has to be small compared to the

distance over which mean quantities, like u here, vary appreciably. However, there is some

variation of MLT where we can study a non-local transport. For example, the paper by

Spiegel in 1962 solves the calculation of heat flux in the convection zone by employing the

MLT. However, his approach is to consider the inward energy access to be the energy access

of an outward-moving convective element. He avoided the direct expansion regarding the

mixing length so there is no limitation for the mixing length as it remains uncertain in his

derivation. But the method is generated from the same idea.

3. TOKAMAK TRANSPORT

A. Dimensionless number

In this section, we present some simple applications of mixing length ideas to tokamak

transport. Let’s represent the tokamak by a quasi-2D model like shown in FIG. 3.

Here we consider a Rossby number Ro ∼ v⊥Ω � 1. Therefore, the quasi-2D cell has a

coarse grid in the parallel direction (k⊥ � k‖). We also consider ω < Ω, so we have E × B

advection

ṽ⊥ =
c

B
E× ẑ (3.1)

For the perturbation located at the resonant surface, the pitch of the magnetic field line

matches with the pitch of the perturbation. For a periodic magnetic field perturbation

B̃ ∼ ei(mθ−nφ), the pitch of the magnetic field which can be represented by the safety factor

q has

q = rBT/RBθ = m/n (3.2)
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FIG. 3. A schematic of the steady-state velocity profile of pipe flow with a no-slip boundary

condition. The red curve denotes the x-component velocity distribution with y.

At the resonant surface (k ·B = 0) ,we have k‖ = 0. Since k‖ is a function of radius r, inside

the resonant surface we have

k ·B/|B| = k‖(r) (3.3)

We are particularly interested in the perturbations on the resonant surface. For k‖ = 0,

there won’t be any contributions from the bending energy of the magnetic field to the

energy principle. Also, at k‖ = 0, there would be no Landau damping due to the vanishing

of k‖v‖ term. Therefore, perturbation takes place at the resonant surface. In other words,

the turbulence are ‘pinned’ on the resonant surface of the plasma.

To study the turbulence transport, let us first look at the dimensionless numbers Re =

vL/ν. The first thing comes to mind might be the Reynolds number. However, the Reynolds

number is irrelevant in this story because the dissipation is not generally due to viscosity.

The number which is relevant is the Kubo number Ku. The Kubo number is the ratio of

the scattering length over the correlation length

Ku ∼ δx/∆ ∼
∫
ṽdt/∆ ∼ ṽτc/∆, (3.4)

where ṽ is the velocity perturbation, τc is the correlation time and ∆ is the correlation length.

A small Kubo number (Ku < 1) means there many perturbation with in one correlation

length. In this case the transport can be considered as diffusive. For a large Kubo number

(Ku > 1), this means the scattering length is larger than the correlation length. Therefore,

the system can be considered as strong scattering and highly nonlinear.
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(Akin to the Kubo number in fluid turbulence transport, we can also get a magnetic

Kubo number to study the field line transport in magnetic turbulence. The magnetic Kubo

number can be defined as

Ku ∼ δB

B0

l‖
l⊥
, (3.5)

where δB is the fluctuation of the magnetic field and B0 is the average field. l⊥ and l‖

respectively denote the correlation length in the perpendicular and parallel direction.)

In reality the tokamak is generally in a cross-over regime, where the Kubo number is at

Ku ∼ 1 and we have a saturated turbulence. Generally, we can estimate the perturbation

strength by

ṽ ∼ ∆/τc (3.6)

Most of the turbulence we encountered in magnetic confinement is not strong turbulence

(Ku ≤ 1). It is more akin to the wave turbulence rather than the fluid turbulence with high

Reynolds number. Generally, the wave turbulence has a form with a quadratic nonlinear

term, like

∂ta ∼ Caa+ ...,

∂tε ∼ ∂t|a|2 ∼ C〈aaa〉+ ...,

(3.7)

(3.8)

where a denotes the wave amplitude and C is a coupling coefficient. From Eq. 3.8, we know

that the energy transfer of the turbulence is resulted by three modes interaction (or ‘triad

interaction’). Therefore, the key physics is important to study the triad coherence time.

A reasonable way to study the triad coherence time would be to relate the triad coherence

time τc to the rate of energy evolution 1
ε
∂ε
∂t
, which is the inverse of the characteristic time

scale of energy evolution τε. For the wave turbulence, the triad coherence time is usually

small
1

ε

∂ε

∂t
τc < 1 (3.9)

This means the turbulence is weak and we have many kicks within the time scale of energy

evolution.

Although the turbulence is weak, the dynamic range of the turbulence is quite large.

Usually we can expect a large dynamic range in strong turbulence. In Kolmogorov 1941

(K41) Theory, the dynamic range is the ratio of excitation length scale l0 to the dissipation
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FIG. 4. The ‘zoo’ of length scale in tokamak (ordered in increasing length from right to left).

Here, a denotes the system size. Ln,LT is respectively the length scale of density and temperature

gradient. DWT is the drift wave turbulence. CTEM is the collisionless trapped electron mode.

ITG is ion temperature gradient. ETG is the electron temperature gradient.

length scale ld. The excitation length scale comes from the energy flux

ε ∼ v3/l0, (3.10)

The dissipation scale is related to Kolmogorov dissipation scale, which is

ld ∼ (
ν3

ε
)1/4. (3.11)

Therefore, the dynamic range has

l0
ld
∼ (

vl0
ν

)
3
4 ∼ Re

3
4 (3.12)

Therefore, for strong turbulence with Re � 1, we would get a larger dynamic range of

the turbulence. While in plasma turbulence, you can have a weak turbulence and a large

dynamic range. That is the difference.

B. Dynamic range of DWT

From FIG. 4, we can see that there is a large range of length scale in tokamak. The ratio

of the largest scale to the smallest scale is pretty big. Unlike the pipe flow we talked about

in Section. 1, there are two dynamic scales for the drift wave turbulence. The first scale
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is the gyro-radius of the ions ρi. It sets the minimum of the non-dissipative length scale.

(There is no corresponding scale for ρi in the case for the pipe flow. )The other one is the

macroscopic scale, like the system size a or or the length scale of the temperature profile

LT . (In the case for the pipe flow, this corresponds to the distance to the wall y.) Here, we

set a key smallness parameter ρ∗ as

ρ∗ = ρi/LT � 1 (3.13)

The smallness parameter ρ∗ is of great interest in terms of size scaling in tokamak. The

question we want to answer here is: what is the best optimized scale for magnetic confine-

ment? Is ‘bigger always better’?

To further understand the transport inside tokamak, we need to look at the mixing length

we talked about in Section 2. The mixing length will be a length scale between ρi to ρi/ρ∗,

so we can set

lmix ∼ LTρ
α
∗ (3.14)

where α is a parameter ranging from 0 to 1.

Also, in analogous to the case in the pipe flow that the diffusivity can be expressed as

u∗y, the diffusivity for the drift wave turbulence can be expressed as

D ∼ ṽlmix, (3.15)

where the typical velocity ṽ is the diamagnetic velocity vd ∼ ρ∗Cs.

We can rewrite the diffusivity as

D ∼ ρ∗CsLTρ
α
∗

∼ ρiCsρ
α
∗

(3.16)

Noticed that ρiCs has a dimension of diffusivity, we find that it is related to Bohm diffusion

D ∼ DBρ
α
∗ (3.17)

Here, DB ∼ T/B is the Bohm diffusivity. If α = 0, then the diffusion is simply Bohm

diffusion. In this case, ‘bigger is not better’. For α = 1, the diffusion becomes Gyro-Bohm

Diffusion

D ∼ DGB ∼ DBρ∗ ∼ ρ2iCs/LT (3.18)
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Because the energy confinement time τE ∼ L2
T/D, so

τE ∼ L3
T ∼ a3. (3.19)

In this case, indeed, ‘bigger is better’.

Again, the reality is usually somewhere in between. In reality, we usually have 0 < α < 1,

which we called the Broken Gyro-Bohm Diffusion. Typically, an ad hoc approach to evaluate

the mixing length would be the geometric mean of the gyro radius times the profile length

scale,

lmix ∼ (ρiLT )1/2. (3.20)

The smallness parameter ρ∗ is complicated by the multi-zone structure of the confinement

in tokamak. For example, in H-mode, the confinement physics in the core and pedestal is

different. It is still an ongoing study about how we can come up with a global scaling.

An example for the Bohm Diffusion model is to look at the analogous question in the

Rayleign Beynard Convection. The key study the dimensionless parameters in this heat

transfer is to compare the Nusselt Number (Nu) with the Rayleign number

Nu ∼ 〈ṽT̃ 〉
χ∆T/h

Re ∼ h3gα∆T

χν

(3.21)

(3.22)

where χ is the thermal diffusivity, α is the expansion coefficient. Nusselt number denotes

the ratio of the convective heat flux and the conductive heat flux. The Rayleign number

describes the strength of the drive.

The emperical observation of Rayleign Benard Convection tells us that the temperature

gradient is mostly located at the boundary layer, which is akin to the boundary confinement

in H-mode. The temperature density in the core is flat, so the size doesn’t really matter

(‘bigger does not mean better’). In other words, the heat flux 〈ṽT̃ 〉 should be independent

of the box size. Therefore,

Nu ∼ 〈ṽT̃ 〉h/χ∆T (3.23)

Notice that Ra ∼ h3, so

Nu ∼ (Ra)1/3 (3.24)

This scaling is well supported by the simulation and experimental result.
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FIG. 5. (a) A schematic figure of Rayleign Beynard Convection inside the box. (b) A schematic

figure of the temperature evolution in the horizontal direction.

C. Theoretical view of the diffusion

To revisit our discussion on Bohm and Gyro Bohm diffusion in a theoretical view, we can

calculate the diffusion coefficient in the Kubo formalism

D⊥ ∼
∫ ∞
0

〈ṽ(0)ṽ(−τ)〉dτ (3.25)

Here, we consider a quasi-2D system and we are considering ions. So the velocity will be

the sum of E ×B drift

v⊥ ∼
c

B0

∑
k

E⊥,kexp(ik · r)

D⊥ ∼
∫ ∞
0

dτ
∑
k

|ṽk|2〈exp(−ik · r(0)) · exp(−ik · r(−τ))〉

(3.26)

(3.27)

where ṽk = c
B
Ẽ⊥ × ẑ. For a statistical model, we can express r(−τ) as

r(−τ) = r(0) + δr(−τ) (3.28)

where δr(−τ) is a kick due to scattering which is stochastic. Therefore, the diffusion coeffi-

cient has

D⊥ ∼
∫ ∞
0

dτ
∑
k

|ṽk|2〈exp(ik · δr(−τ))〉 (3.29)

13



Because δr(−τ) is a small value, we can Taylor expand the equation

D⊥ ∼
∫ ∞
0

dτ
∑
k

|ṽk|2〈1 + ik · δr(−τ)− (k · δr(−τ))2

2
+ ...〉

∼
∫ ∞
0

dτ
∑
k

|ṽk|2〈1−
(k · δr(−τ))2

2
+O(δr3)〉

∼
∫ ∞
0

dτ
∑
k

|ṽk|2(1− k2⊥D⊥τ)

∼
∫ ∞
0

dτ
∑
k

|ṽk|2(1− exp(−k2⊥D⊥τ))

=
∑
k

|ṽk|2/k2⊥D⊥

(3.30)

So we can see that the diffusion coefficient D⊥ controls the correlation time τc. Also,

the strong scaling of k⊥ which comes form the fact that the particle number is conserved

(∂t
∫
n · dx = 0). It ensures a long correlation time τc at large scale.

The diffusion can be expressed as

D⊥ ∼ (
∑
k

|ṽk|2/k2⊥)1/2 (3.31)

We can go further to say that it has a symmetric spectrum in 2D and rewrite the expression

as

D⊥ ∼ (

∫ ∞
0

|ṽk|2/dk⊥)1/2 (3.32)

This is telling us that the spectrum structure, especially the infrared scaling, is important

in diffusion.

Recall from Eq. (3.15) and compare it to Eq. (3.32), we can see that

lmix ∼ k−1⊥

ṽrk ∼
c

B
ikθφ̂k

(3.33)

(3.34)

Therefore, the mixing length is determined by the structure of the spectrum.

To estimate the potential, we can rewrite Eq. (3.34) as,

ṽrk ∼ kθρiCs|e|φ̂k/T (3.35)

Recall that in drift wave turbulence, the phase velocity is between the thermal velocity of

electrons and ions (vthi < ω/k‖ < vthe). With the phase velocity slower than the electrons,
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the density satisfies the Boltzmann relation ñ/n ∼ |e|φ̂/T We can rewrite Eq. (3.34) and

Eq. (3.32) as,

ṽ ∼ kθρiCs
ñ

n
(3.36)

D ∼ DBkθ
ñ

n
lmix (3.37)

This is the general basic scaling for the diffusion in drift wave turbulence.

A good estimation on ñ/n is conducted by Kodemtsev in 1965. The idea is to write down

the continuity equation and evaluate when the nonlinear term saturates with the linear term

�
�∂tn + ṽ · ∇ñ = −ṽ · ∇〈n〉

ṽkrñ = −ṽ ∂〈n〉
∂r
∼ −ṽn/Ln

(3.38)

(3.39)

And we can get the estimate of ñ/n

ñ/n =
1

krLn
(3.40)

Substitute back to Eq. (3.37), we get

D = DB
kθ
krLn

lmix (3.41)

If the system is isotropic than kθ/kr vanish,

D = DB
lmix
LT
∼ DBρ

α
∗ (3.42)

which comes back to our argument in Eq. (3.17).

D. Effect of shear flow

If we are looking at the case with a shear flow, how would things change? We can go back

to our derivation of 3.28. In the case of E ×B shear flow, for δr there are two contributors,

the stochastic kick and the shear flow

δr = −vyτ + δrs(−τ) (3.43)

where δrs means the stochastic kick. We can express things in terms of shear

δr = −v′y
∫ τ

xτ + δrs(−τ) (3.44)

15



Here v′y is the velocity gradient in shear flow (vy = (vy(0)+xv′y)ŷ). Noticed that the particle

radial position x is scattered , so

δr = −v′y
∫ τ

0

δx(−τ ′)dτ ′ + δrs(−τ) (3.45)

Going back to Eq. (3.27), we get

D⊥ ∼
∫ ∞
0

dτ
∑
k

|ṽk|2〈exp(ikyv′y
∫ τ

0

δx(−τ ′)dτ ′) · exp(ik · δr(−τ))〉 (3.46)

Therefore, the shearing actually couples the streaming and scattering process. This leads to

an enhanced decorrelation.

D⊥ ∼
∫ ∞
0

dτ
∑
k

|ṽk|2〈exp(ik3yv′2y Drτ
3/3) · exp(ik · δr(−τ))〉 (3.47)

Therefore, the correlation time now has

τc = (K2
yv
′
yDr/3)−1/3 (3.48)

A important point worth noticing is that now correlation time depends on ky rather than kr

like we previously talked about (1/τ⊥ ∼ k2rDr). This means that the shear has broken the

relation of mixing length and scattering,

Another point worth mentioning is the two time history in the diffusion

D⊥ ∼
∫ ∞
0

dτ
∑
k

|ṽk|2〈exp(−(τ/τc)
3 − τ/τ⊥)〉 (3.49)

The second term in the exponential is like what we talked about in Section. 3.C. However,

if the first term is dominant, which means (K2
yv
′
yDr)

1/3 > k2rDr, then

kyv
′
y∆r > k2rD (3.50)

where ∆r is the radial coherent scale (1/k2r ∼ ∆r) Then the diffusion can be written as

D ∼
∫ ∞
0

dτ
∑
k

|ṽk|2〈exp(−(τ/τc)
3)〉

∼
∑
k

|ṽk|2τc

∼
∑
k

|ṽk|2τ⊥
τc
τ⊥

(3.51)
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Because τc/τ⊥ < 1, therefore the diffusion went down. Therefore, sheath is good for con-

finement.

We can also get some further estimate with Eq. (3.51)

D ∼
∑
k

|ṽk|2(K2
yv
′2
y D)−1/3

D4/3 ∼
∑
k

|ṽk|2(K2
yv
′2
y )−1/3

(3.52)

(3.53)

We can see that the diffusion is still sensitive to low ky like we previously discussed.

The bottom line here is shear is good for confinement. It reduces diffusion and drive us

away form Bohm Diffusion.
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